NDOS Muon Trajectory to Decay Position

by Jeffrey Eldred with help from Patricia Vahle

Quick Personal Update

- This presentation is part of the research I did to complete my BS from William & Mary in honors physics and applied mathematics.
- In the Fall, I will go to Indiana University for my physics Ph.D.

Neutrino energy depends on angle and decay position

$$E_{\nu} = \frac{(1 - (m_{\mu}/m_{(\pi,K)})^2)E_{(\pi,K)}}{1 + \gamma^2 \theta^2}$$

Determing decay position from detector data

 The trajectory of muons is correlated to the trajectory of the neutrino - the smaller the hadronic shower the better the correlation.

Conclusions with Caveats

- This shows an analysis of decay positions from muon trajectories may be possible.
- Uncertainty involved in reconstructing CC events and muon tracks were not included in our analysis
 - Rock muons are not included in our analysis.
- We get this signal with ~60,000 CC events.

Future Work

- Incorporate error bars from reconstruction efforts into this analysis.
- Tune parameters of the NuMI model so that there is a best fit with the distribution of muon angles that we detect in NDOS.
- Ensure that this fitting/tuning does not override more reliable data, by incorporating it into other efforts to tune the NuMI model from data.

Thank You for Listening!

Any Questions?

Image sources from Brian Rebel, Zarko Pavlovic, and Mark Dorman